
Network Evasion

James Anderson

©2018 FireEye | Private & Confidential ©2019 FireEye

▪What we’re covering

▪ Network Evasion

– Current State

– Abusing HTTP

– External Communications

– Detection and Evasion

©2018 FireEye | Private & Confidential ©2019 FireEye3

James Anderson

3

▪ Red Team Consultant at Fireeye

▪ Previously Work

– Reverse Engineering

– Security Engineer

▪ Big fan of Board Games, D&D and Hack
the box challenges.

Evasion

4

~Sun Tzu, The Art of War

©2018 FireEye | Private & Confidential ©2019 FireEye5

Network Evasion

5

Network Evasion: bypass an information security
device like a firewall or intrusion detection prevention
system in order to deliver an exploit, attack or other
form of malware to a target network or system without
detection.

©2018 FireEye | Private & Confidential ©2019 FireEye6

Network Evasion

6

▪ To achieve network evasion
a set of techniques, tools
practices is used to conceal
the true activity to human
and automated resources

– Obfuscation

– Encryption

– Stenography

©2018 FireEye | Private & Confidential ©2019 FireEye7

Network Evasion

7

Source: Juniper Networks

©2018 FireEye | Private & Confidential ©2019 FireEye8

Network Evasion

8

▪ A World with ubiquitous
monitoring

– Host based EDR products

– Network Port spanning

– Machine Learning

– AMSI – Group Policy Settings

– NGFW

©2018 FireEye | Private & Confidential ©2019 FireEye9

Network Evasion

9

▪ Easy to detect scan traffic (nmap)

– IDS/IPS can easily to detect

▪ Org’s are getting better at detecting password
spraying

▪ Multiple failed attempts may send you to a
shunned portal

©2018 FireEye | Private & Confidential ©2019 FireEye10

Network Evasion

1

0

▪ Domain Fronting

– Beacons through a
high reputation
cloud provider

– Uses the host
header that points
to a subdomain
entry that is a CDN
entry to the actual
server.

https://cobaltstrike.com

©2018 FireEye | Private & Confidential ©2019 FireEye11

Network Evasion

1

1

▪ Domain Fronting gave us
the best method of
external
communications we
could ever ask for.

▪ While it is still around the
window is closing

▪ Lateral movement
techniques are being
signature.

▪ SSL decryption.

©2018 FireEye | Private & Confidential ©2019 FireEye12

Network Evasion

1

2

▪ Some techniques, ideas, OPSEC and resources
of how to remain stealthy in a high security
environment

©2018 FireEye | Private & Confidential ©2019 FireEye13

Public Platforms

1

3

▪ P2C2 (Public Platform Command and Control)

▪ CRUD (Create Read Update Destroy)

SCANNING

14

©2018 FireEye | Private & Confidential ©2019 FireEye15

Port Scanning

1

5

▪ Three things matter when you are looking at initial scanning

– Timing between requests

– Requests per IP

– Packet Fragmentation

▪ Slowing you scans down is a must

▪ Being able to manipulate your source IP’s will help

©2018 FireEye | Private & Confidential ©2019 FireEye16

Packet Fragmentation

1

6

▪ Many security devices
rely on sessionized data

– Initiate a connection
(handshake)

– Pass some data

– Close the connection

Image source cisco

©2018 FireEye | Private & Confidential ©2019 FireEye17

Packet Fragmentation

1

7

▪ The MTU size of a link determines whether there is a need to
fragment a datagram into smaller units or not

©2018 FireEye | Private & Confidential ©2019 FireEye18

Packet Fragmentation

1

8

▪ Fragmented Packets to
avoid session detection

©2018 FireEye | Private & Confidential ©2019 FireEye19

Port Scanning

1

9

▪ Nmap

– Timing options T1: Sneaky(waits 15 seconds) T0:
Paranoid (waits 5 minutes)

– Packet Fragmentation (-f)

– https://nmap.org.book.man-bypass-firerwalls-
rds.html

https://nmap.org.book.man-bypass-firerwalls-rds.html/

©2018 FireEye | Private & Confidential ©2019 FireEye20

Port Scanning

2

0

▪ Proxycannon (from ShelIntel)
https://github.com.ShelIntel/scr
ipts

– Can spin up 20 Amazon EC2
instances to proxy scans through

– Can rotate public WAN IP of
nodes

https://github.com.shelintel/scripts

©2018 FireEye | Private & Confidential ©2019 FireEye21

Proxycannon

2

1

HTTP PIPELINING

22

©2018 FireEye | Private & Confidential ©2019 FireEye23

HTTP Pipelining – DigiNinja

2

3

▪ In the early days each object
requested by a client was done in
its own TCP connection

▪ If a page had two images and one
JavaScript library, then there would
be four connections,

▪ Pipelining allows for multiple
requests at the same time to occur

– Part of HTTP/1.0, HTTP/1.1
https://digi.ninja/blog/pipelining.php

https://digi.ninja/blog/pipelining.php

©2018 FireEye | Private & Confidential ©2019 FireEye24

HTTP Pipelining

2

4

▪ Multiple HTTP requests are sent on a
single TCP connection

– Technique superseded by HTTP2

▪ HTTP pipelining is not enabled by
default in modern browsers

▪ Support still exists in most servers and,
more importantly, most CDNs.

,

https://digi.ninja/blog/pipelining.php

https://digi.ninja/blog/pipelining.php

©2018 FireEye | Private & Confidential ©2019 FireEye25

HTTP Pipelining

2

5

▪ Lets start with an example
request

GET /pipeline/page1.php HTTP/1.1
Host: vuln-demo.com

HTTP/1.1 200 OK
Date: Sat, 14 Sep 2019 03:48:34
GMT
Server: Apache
…
Content-Length: 14

This is page 1

©2018 FireEye | Private & Confidential ©2019 FireEye26

HTTP Pipelining

2

6

▪ Two requests

– Page1.php

– Page2.php

GET /pipeline/page1.php HTTP/1.1
Host: vuln-demo.com

GET /pipeline/page2.php HTTP/1.1
Host: vuln-demo.com

©2018 FireEye | Private & Confidential ©2019 FireEye27

HTTP Pipelining

2

7

▪ Burp Doesn’t handle this type of request well.
Injects content length header

©2018 FireEye | Private & Confidential ©2019 FireEye28

HTTP Pipelining

2

8

▪ These can both be sent, will
be processed by the server,
and then the responses sent
back in order.

GET /pipeline/page1.php HTTP/1.1
Host: vuln-demo.com

GET /pipeline/page2.php HTTP/1.1
Host: vuln-demo.com

©2018 FireEye | Private & Confidential ©2019 FireEye29

HTTP Pipelining

2

9

▪ Do you require the header: Connection: keep-alive ?

▪ "keep-alive" enables persistent connections which is a different
thing to pipelining

– Persistent connections keep the TCP connection open between
requests but enforce the original rule of waiting for any previous
requests to return before making new ones

– In HTTP 1.0, persistence had to be activated with the "keep-alive"
header, in HTTP 1.1, persistence is assumed unless a connection is
requested to be closed with the Connection: close header.

©2018 FireEye | Private & Confidential ©2019 FireEye30

HTTP Pipelining

3

0

▪ Sending the two requests
(echo -e "GET /pipeline/page1.php HTTP/1.1\r\nHost: vuln-demo.com\r\n\r\nGET

/pipeline/page2.php HTTP/1.1\r\nHost: vuln-demo.com\r\n\r\n"; sleep 5) | openssl s_client -

connect vuln-demo.com:443 -servername vuln-demo.com

HTTP/1.1 200 OK

Date: Fri, 08 Mar 2019 20:42:47 GMT

Server: Apache

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Access-Control-Allow-Origin: https://vuln-demo.com

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Access-Control-

Allow-Origin Content-Length: 14

Keep-Alive: timeout=5, max=100

Content-Type: text/html; charset=UTF-8

This is page 1HTTP/1.1 200 OK

Date: Fri, 08 Mar 2019 20:42:47 GMT

Server: Apache

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Access-Control-Allow-Origin: https://vuln-demo.com

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type,

Access-Control-Allow-Origin

Content-Length: 14

Content-Type: text/html; charset=UTF-8 This is page 2DONE

©2018 FireEye | Private & Confidential ©2019 FireEye31

HTTP Pipelining

3

1

▪ Sending the two requests
HTTP/1.1 200 OK

Date: Fri, 08 Mar 2019 20:42:47 GMT

Server: Apache

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Access-Control-Allow-Origin: https://vuln-demo.com

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Access-Control-

Allow-Origin Content-Length: 14

Keep-Alive: timeout=5, max=100

Content-Type: text/html; charset=UTF-8

Date: Fri, 08 Mar 2019 20:42:47 GMT

Server: Apache

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Access-Control-Allow-Origin: https://vuln-demo.com

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type,

Access-Control-Allow-Origin

Content-Length: 14

Content-Type: text/html; charset=UTF-8 This is page 2DONE

HTTP/1.1 200 OK
This is page 1

Response 1

Response 2

©2018 FireEye | Private & Confidential ©2019 FireEye32

HTTP Pipelining

3

2

▪ Two requests, two responses

– Pipeline worked!

▪ Can we use it through a CDN?

– AWS Cloudfront

▪ Actual domain fastpackagedomain.com

▪ Fronted Domain.
d1sdh26o01490vk5.cloudfront.net

©2018 FireEye | Private & Confidential ©2019 FireEye33

HTTP Pipelining

3

3

▪ Via Cloudfront AWS

$ (cat pipe2 ; sleep 5) | openssl s_client -connect fronted.fastpackagedomain:443 -

fronted.fastpackagedomain | grep "<title>”

depth=2 C = US, O = Amazon, CN = Amazon Root CA 1

verify return:1

depth=1 C = US, O = Amazon, OU = Server CA 1B, CN = Amazon

verify return:1

depth=0 CN = fronted.fastpackagedomain

verify return:1

<title>FastPackage - Delivered</title>

<title>Fronted Vuln Demo</title>

DONE

©2018 FireEye | Private & Confidential ©2019 FireEye34

HTTP Pipelining

3

4

▪ Could be used as a covert channel for
communications

▪ Would require SSL decryption to interpret
the payload.

▪ Some IDS/IPS devices might only parse
the first request leaving the second
request concealed.

We need to be QUIC-ER

35

©2018 FireEye | Private & Confidential ©2019 FireEye36

QUIC

3

6

▪ Wait... Firewall was blocking all
TCP?

©2018 FireEye | Private & Confidential ©2019 FireEye37

QUIC

3

7

©2018 FireEye | Private & Confidential ©2019 FireEye38

QUIC

3

8

©2018 FireEye | Private & Confidential ©2019 FireEye39

QUIC

3

9

▪ What type of traffic is this?

©2018 FireEye | Private & Confidential ©2019 FireEye40

QUIC

4

0

▪ What’s going on here?

©2018 FireEye | Private & Confidential ©2019 FireEye41

QUIC HTTP/3

4

1

▪ Quick UDP Internet Connections (QUIC) is
a new protocol created by Google to
make the web faster and more efficient

– Enabled by default in Chromium and used
by a growth list of sites

– Encrypted by default

©2018 FireEye | Private & Confidential ©2019 FireEye42

QUIC HTTP/3

4

2

©2018 FireEye | Private & Confidential ©2019 FireEye43

QUIC HTTP/3

4

3

▪ Source: cloudflare

©2018 FireEye | Private & Confidential ©2019 FireEye44

QUIC HTTP/3

4

4

▪ Unlike the TCP protocol, QUIC requires 0-RTT in the handshake
compared to 1-3 roundtrip TCP + TLS trips

▪ This ensures security for anyone using the protocol

▪ Invalidates the possibility of a man-in-the-middle attack

– A lot of inspection mechanisms don’t support QUIC Protocol.

©2018 FireEye | Private & Confidential ©2019 FireEye45

QUIC HTTP/3

4

5

▪ Quick Example of using QUIC

– Most stable version of QUIC is written in go
by Lucas Clemente

– https://github.com/lucas-clemente/quic-go

https://github.com/lucas-clemente/quic-go

©2018 FireEye | Private & Confidential ©2019 FireEye46

QUIC HTTP/3 - SERVER

4

6

package main

import (
"fmt"
"io/ioutil"
"log"
"time"
"net/http"
"github.com/lucas-clemente/quic-go/h2quic"
"github.com/lucas-clemente/quic-go/internal/protocol"
quic "github.com/lucas-clemente/quic-go"

)

type Page struct {
Title string
Body []byte

}

func (p *Page) save() error {
filename := p.Title + ".txt"
return ioutil.WriteFile(filename, p.Body, 0600)

func loadPage(title string) (*Page, error) {
filename := title + ".txt"
body, err := ioutil.ReadFile(filename)
if err != nil {

return nil, err
}
return &Page{Title: title, Body: body}, nil

}

func viewHandler(w http.ResponseWriter, r *http.Request) {
title := r.URL.Path[len("/view/"):]
p, _ := loadPage(title)
fmt.Fprintf(w, "<h1>%s</h1><div>%s</div>", p.Title, p.Body)

}

func main() {
versions := protocol.SupportedVersions
http.HandleFunc("/view/", viewHandler)

server := h2quic.Server{
Server: &http.Server{Addr: ":443"},

QuicConfig: &quic.Config{Versions: versions, IdleTimeout: 30000 * time.Millisecond},
}

log.Fatal(server.ListenAndServeTLS("fullchain.pem", "privkey.pem"))
}

©2018 FireEye | Private & Confidential ©2019 FireEye47

QUIC HTTP/3 - CLIENT

4

7

package main

import (
"bytes"
"flag"
"fmt"
"io"
"net/http"
"time"

quic "github.com/lucas-clemente/quic-go"
"github.com/lucas-clemente/quic-go/h2quic"
"github.com/lucas-clemente/quic-go/internal/protocol"

)

func main() {
urls := flag.String("url", "https://127.0.0.1:443/", "URL")
flag.Parse()

versions := protocol.SupportedVersions
roundTripper := &h2quic.RoundTripper{

QuicConfig: &quic.Config{Versions: versions, IdleTimeout: 30000 * time.Millisecond},
}
defer roundTripper.Close()
hclient := &http.Client{

Transport: roundTripper,
}

rsp, err := hclient.Get(*urls)
rsp.Header.Add("User-Agent", "UnkL4b")
if err != nil {

panic(err)
}

body := &bytes.Buffer{}
_, err = io.Copy(body, rsp.Body)
if err != nil {

panic(err)
}
fmt.Printf("%s", body.Bytes())

}

©2018 FireEye | Private & Confidential ©2019 FireEye48

QUIC HTTP/3

4

8

©2018 FireEye | Private & Confidential ©2019 FireEye49

QUIC HTTP/3

4

9

▪ Demo

©2018 FireEye | Private & Confidential ©2019 FireEye50

QUIC HTTP/3

5

0

▪ Because the QUIC transport stream does not allow
Firewall to perform a deep packet inspection, there is an
impact in both reporting and network security that allows
attackers to abuse the protocol and avoid detection of
malicious actions just changing the version in the public
header.

©2018 FireEye | Private & Confidential ©2019 FireEye51

QUIC HTTP/3

5

1

▪ QUIC Structure

©2018 FireEye | Private & Confidential ©2019 FireEye52

QUIC HTTP/3

5

2

▪ QUIC Public Header

©2018 FireEye | Private & Confidential ©2019 FireEye53

QUIC HTTP/3

5

3

▪ QUIC Version

– The QUIC specification reserves
from 0x00000001 to 0x0000ffff
for standardized versions of the
protocol

– How some IDS interpret a
connection with the QUIC
protocol

– What If we change the header
in our comms

Version Owner Notes

0x00000000 n/a This value is reserved as invalid

0x?a?a?a?a IETF

Values meeting this pattern

((x&0x0f0f0f0f)==0x0a0a0a0a)

are reserved for ensuring that

version negotiation remains
viable.

0x50435130
Private
Octopus Picoquic internal test version

0x5130303[1-9] Google
Google QUIC 01 - 09 (Q001 -
Q009)

0x5130313[0-9] Google
Google QUIC 10 - 19 (Q010 -
Q019)

0x5130323[0-9] Google
Google QUIC 20 - 29 (Q020 -
Q029)

0x5130333[0-9] Google
Google QUIC 30 - 39 (Q030 -
Q039)

0x5130343[0-9] Google
Google QUIC 40 - 49 (Q040 -
Q049)

0x51474f[0-255] quic-go “QGO” + [0-255]

0x91c170[0-255] quicly “qicly0” + [0-255]

0xabcd000[0-f] Microsoft WinQuic

0xf10000[00-ff] IETF QUIC-LB

0xf123f0c[0-f] Mozilla MozQuic

0xfaceb00[0-f]
Faceboo
k mvfst

0xff000001 IETF draft-ietf-quic-transport-01

0xff000002 IETF draft-ietf-quic-transport-02

0xff000003 IETF draft-ietf-quic-transport-03

0xff000004 IETF draft-ietf-quic-transport-04

0xff000005 IETF draft-ietf-quic-transport-05

0xff000006 IETF draft-ietf-quic-transport-06

0xff000007 IETF draft-ietf-quic-transport-07

0xff000008 IETF draft-ietf-quic-transport-08

0xff000009 IETF draft-ietf-quic-transport-09

0xff00000a IETF draft-ietf-quic-transport-10

0xff00000b IETF draft-ietf-quic-transport-11

0xf0f0f0f[0-f] ETH Zürich Measurability experiments

©2018 FireEye | Private & Confidential ©2019 FireEye54

QUIC HTTP/3

5

4

▪ UnkL4b - unkl4b.github.io

▪ The tests consist of blocking the QUIC protocol in Fortinet
AppControl and running the client to close communication
with a server in the cloud that is accepting only the
protocol in the Q309 version

0x5130333[0-9] Google Google QUIC 30 - 39 (Q030 - Q039)

©2018 FireEye | Private & Confidential ©2019 FireEye55

QUIC HTTP/3

5

5

▪ Fortigate logs in Splunk

▪ Blocked when identified as QUIC

©2018 FireEye | Private & Confidential ©2019 FireEye56

QUIC HTTP/3

5

6

▪ Passed with the header version change

©2018 FireEye | Private & Confidential ©2019 FireEye57

QUIC HTTP/3

5

7

▪ New/Unique Protocols are harder for IDS/IPS to
track

▪ For those that to have signatures, changing
the public header can effectively mask it
again.

©2018 FireEye | Private & Confidential ©2019 FireEye58

HTTP2

5

8

▪ Merlin is a cross-platform post-exploitation
HTTP/2 Command & Control server

– https://github.com/Ne0nd0g/merlin

https://github.com/Ne0nd0g/merlin

Traffic Normalization

59

©2018 FireEye | Private & Confidential ©2019 FireEye60

Normalizing Traffic

6

0

▪ Signature based NIDS

– Look for pre-defined patters of previously
known attacks

– Doesn’t require training phase

– Highly available and popular

– Can’t catch new attacks

©2018 FireEye | Private & Confidential ©2019 FireEye61

Normalizing Traffic

6

1

▪ Bypassing this form of signature

– Not hard but not super easy

– Change traffic elements

– Don’t match with any signatures

©2018 FireEye | Private & Confidential ©2019 FireEye62

Anomaly based NIDS

6

2

▪ Build a statistical model describing the
normal network traffic and flagging the
abnormal traffic

▪ Requires training phase

▪ Uses math, machine learning and some
more sophisticated methods

▪ Might catch on previously unseen activity.

©2018 FireEye | Private & Confidential ©2019 FireEye63

Anomaly based NIDS

6

3

HTTP GET site.com/nte

SMTP: mail.server.com

HTTPS: GET news.com/test

SSH

LEARNING

ALGORITHIM

PATTERN (NORMAL

TRAFFIC PROFILE)

NORMAL ABNORMAL

POST badsite.com. HTTP/1.1

Cookie: sessionaGVsbG8gdGhlcmUK

RECORDED DAILY TRAFFIC

NEW TRAFFIC

©2018 FireEye | Private & Confidential ©2019 FireEye64

Anomaly based NIDS

6

4

▪ Evasion

– Pre-Training

– Post-Training

©2018 FireEye | Private & Confidential ©2019 FireEye65

Anomaly based NIDS

6

5

▪ Pre Training

– Sending Malicious
requests to the system.

©2018 FireEye | Private & Confidential ©2019 FireEye66

Machine Learning

6

6

▪ DARKTRACE

▪ CISCO

©2018 FireEye | Private & Confidential ©2019 FireEye67

Machine Learning

6

7

▪ Machine Learning Algorithms

– Supervised machine learning algorithms

▪ Can apply what has been learned in the past to
predict future events using labelled examples.

– Unsupervised machine learning algorithms:

▪ Used when the information used to train is
neither marked nor classified.

– Semi-supervised machine learning algorithms:

▪ Makes use of unlabelled data for training — with
a blend of less labelled data and a lot of
unlabelled data.

©2018 FireEye | Private & Confidential ©2019 FireEye68

Machine Learning

6

8

– Basic features of individual TCP connections

Feature Name Description Type

duration length (number of seconds) of the connection continuous

protocol type type of the protocol (tcp, udp) discrete

service network service of the destination. (http, telnet ssh..) discrete

src_bytes number of data bytes from source to destination continuous

dst_bytes number of data bytes from destination to source continuous

flag normal or error status of the connection discrete

land
1 if connection is from/to the same host port; 0
otherwise discrete

wrong fragment number of "wrong" fragments continuous

urgent number of urgent packets continuous

©2018 FireEye | Private & Confidential ©2019 FireEye69

Machine Learning

6

9

▪ Common Machine Learning Algorithms

– K means clustering

– Bayes Network

– Random Forest Classifier

– Multi-Layer Perceptron (MLP)

©2018 FireEye | Private & Confidential ©2019 FireEye70

Machine Learning

7

0

▪ Machine Learning Algorithms

– No model is perfect

– We want to sit in the slim but possible False
negative category

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑣𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

©2018 FireEye | Private & Confidential ©2019 FireEye71

Machine Learning

7

1

▪ KDD Cup Data

– Labelled as normal or as an attack

– 4898431 instances with 41 attributes

©2018 FireEye | Private & Confidential ©2019 FireEye72

Machine Learning

7

2

▪ How do we evade detection?

– Normalize your behaviour so you look
like everything else

– Avoid similar methods of connection
that ML would use as a characteristic.

©2018 FireEye | Private & Confidential ©2019 FireEye73

Polymorphic Blanding Attack

7

3

PATTERN (NORMAL

TRAFFIC PROFILE)

NORMAL ABNORMAL

HTTP

SMTP

HTTPS

SSH

STANDARD TRAFFIC▪ Polymorphic Blending attack:
Creating attack packets which
match to a normal traffic profile

I have to learn

what is considered

as normal

Let’s capture live

traffic and check

what’s inside

©2018 FireEye | Private & Confidential ©2019 FireEye74

Blending

7

4

▪ Get traffic capture data of traffic
and define normal behaviour of
users

– Which User agents are most common

– Which ports are used, what kind of
server headers are there?

▪ Alter comms channel to reflect the
same pattern

▪ What hosts is this machine
communicating

▪ https://github.com/tearsecurity/first
order

https://github.com/tearsecurity/firstorder

©2018 FireEye | Private & Confidential ©2019 FireEye75

Blending

7

5

=== Top 10 Port Statistics ===

Port 443: 1677/5937 (28.25%)

Port 58471: 1107/5937 (18.65%)

Port 80: 536/5937 (9.03%)

Port 58457: 454/5937 (7.65%)

Port 54674: 341/5937 (5.74%)

Port 57859: 228/5937 (3.84%)

Port 54119: 157/5937 (2.64%)

Port 58408: 155/5937 (2.61%)

Port 53: 124/5937 (2.09%)

Port 58403: 80/5937 (1.35%)

=== Top 10 Server Headers ===

Server: PWS/8.3.1.0.4: 9/36 (25.00%)

Server: RocketCache/2.2: 5/36 (13.89%)

Server: nginx: 5/36 (13.89%)

Server: NetDNA-cache/2.2: 4/36 (11.11%)

Server: None: 3/36 (8.33%)

Server: nginx/1.8.1: 2/36 (5.56%)

Server: cafe: 1/36 (2.78%)

Server: Microsoft-IIS/7.5: 1/36 (2.78%)

Server: cloudflare-nginx: 1/36 (2.78%)

Server: Microsoft-IIS/10.0: 1/36 (2.78%)

=== Top 10 User-Agent Headers ===

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_2)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84

Safari/537.36: 29/32 (90.62%)

User-Agent: Google Chrome/63.0.3239.84 Mac OS X: 3/32 (9.38%)

©2018 FireEye | Private & Confidential ©2019 FireEye76

Blending

7

6

SERVER 1

SERVER 2

LAPTOP 1

SMB

TCP

▪ Talk to hosts on the same protocol

▪ Don’t talk to hosts that it that this host isn’t
talking to

LAPTOP 2

©2018 FireEye | Private & Confidential ©2019 FireEye77

Machine Learning

7

7

▪ How do we evade detection?

– Normalize your behaviour so you look like
everything else

– Don’t use the same methods of connection
that ML would use as a characteristic.

The quieter you are the more you hear

78

©2018 FireEye | Private & Confidential ©2019 FireEye79

Listening for packets

7

9

▪ Can we listen for packets

– Does require local admin

– Direct traffic to a wrong node and collect the
traffic

©2018 FireEye | Private & Confidential ©2019 FireEye80

Listen for what you want

8

0

▪ Windows starting in XP cannot send data
on a raw socket but it can listen

▪ Alternatively, you may use WinPcap drivers

©2018 FireEye | Private & Confidential ©2019 FireEye81

Listen for what you want

8

1

▪ All analysis is based off the idea of hosts
talking to each other

©2018 FireEye | Private & Confidential ©2019 FireEye82

Listen for what you want

8

2

▪ What if instead we sent to a random
machine in the network and just listened on
a raw socket?

▪ Listening for traffic that is deliberately sent
to the wrong host

©2018 FireEye | Private & Confidential ©2019 FireEye83

Listen for what you want

8

3

▪ The wrong host is likely to drop the packets

– Invalid port

– Wasn’t expecting data.

©2018 FireEye | Private & Confidential ©2019 FireEye84

Listen for what you want

8

4

▪ Finally mask the traffic similar to how
previous packets of data have appeared
being sent to the host.

©2018 FireEye | Private & Confidential ©2019 FireEye85

Listen for what you want

8

5

▪ To send tasking the controller needs to
transmit tasking encapsulated in valid TCP
network traffic

▪ Typically requires connecting to an (open)
listening port on the victim

▪ Send raw packets, skips the triple
handshake.

©2018 FireEye | Private & Confidential ©2019 FireEye86

Listen for what you want

8

6

▪ REDSALT

– A loader that decodes a second-stage loader that decodes
another payload containing a backdoor capable of listening
for commands using a raw socket or obtaining commands
from a URL or file.

The Future?

87

©2018 FireEye | Private & Confidential ©2019 FireEye88

Wrapping up

8

8

▪ Defences are improving.

– Defence in depth continually adds layers

©2018 FireEye | Private & Confidential ©2019 FireEye89

Wrapping up

8

9

▪ Blend in so defenders can’t distinguish between you an
attacker and legitimate activity

– Machine learning

▪ Has a margin of error, we need to sit under it.

▪ Other Technologies not covered

– WCF

– Packet Stuffing

– Serverless Computing

Thank you

90

~Sun Tzu, The Art of War

©2018 FireEye | Private & Confidential ©2019 FireEye91

©2018 FireEye | Private & Confidential

QUIC

92

▪ Packet Fragmentation is back?

©2018 FireEye | Private & Confidential

To Encrypt or not Encrypt?

93

▪ Encrypted

hello #@2dfs$@

hi#@2dfs$@

hello

hi

▪ Plain text

©2018 FireEye | Private & Confidential

Markov Obfuscation

94

MODEL

ABNORMAL

▪ Cylance Spear Team
A String

TTRAINING DATA
Markov Encode

Algorithim

A English text

