eBPF - Android Reverse

Engineering Superpowers
Terry Chia

$ whoami

e Security Consultant @ Centurion Information Security

e Blog: https://www.ayrx.me

e Github: https://github.com/Ayrx

https://www.ayrx.me
https://github.com/Ayrx

Agenda

e Whatis eBPF?
e Why eBPF?
e eBPF on Android

e Writing eBPF programs

What is eBPF?

eBPF

e extended Berkeley Packet Filter
e Framework for tracing a Linux system
e Linux version of Solaris’' DTrace

e Requires a relatively new Linux kernel (> 4.1). Newer
kernels might have more features.

eBPF

e Write custom code that triggers whenever something
happens in the system.

e Write eBPF program & compile to bytecode.
e eBPF bytecode is loaded through the bpf(2) syscall.

e eBPF code is executed with an in-kernel virtual
machine.

eBPF

e Event Sources:

o kprobes / kretprobes

o uprobes / uretprobes

o Tracepoints

o User Statically-Defined Tracing Probes (USDT)

k(ret)probes, u(ret)probes

e kprobes / kretprobes are used to attach to kernel
functions.

e uprobes/ uretprobes are used to attach to userspace
functions.

Tracepoints

e Tracepoints are used to attach to events within the
kernel.

e Alarge number of events are exposed by the kernel.
See /sys/kernel/debug/tracing/events/ for a full list.

Tracepoints

root@dlvisiOn:~# 1ls /sys/kernel/debug/tracing/events/

alarmtimer
asoc

block
bridge
btrfs
cfg8e211
cgroup

clk

cma
compaction
cpuhp
dma_fence
drm

enable
exceptions
ext4

fib

fib6
filelock

filemap

fs

fs_dax
ftrace

gpio

gvt

hda
hda_controller
hda_intel
header event
header page
huge_memory
hyperv

i2c

i915
initcall
intel-sst
iommu

irg

root@dlvision:~# |

irg_matrix
irq_vectors
iwlwifi
iwlwifi_data
iwlwifi_io
iwlwifi_msg
iwlwifi ucode
jbd2

kmem

kvm

kvmmmu
libata
mac8021l
mac80211 msg
mce

mdio

mei

migrate

mmc

module

mpXx

msr

HET

net

nfsd

nmi

nvme

oom
page_isolation
pagemap
percpu

power

printk

qdisc

random

ras
raw_syscalls
rcu

regmap
regulator
rpm

rseq

rtc

sched

scsi
signal

skb

smbus

sock

spi

sunrpc
swiotlb
sync_trace
syscalls
task

tcp
thermal

thermal_power_allocator

timer

tlb

ucsi

udp

v4l2

vbh2
vmscan
vsyscall
wbt
workqueue
writeback
x86_fpu
xdp

xen
xhci-hcd

10

User Statically-Defined Tracing Probes (USDT)

e USDTs are Tracepoints for userspace.

#include <sys/sdt.h>
#include <sys/time.h>
#include <unistd.h>

int main(int argc, char **argv)
I
L

struct timeval tv;

while(1) {
gettimeofday(&tv, NULL);

DTRACE_PROBE1(test-app, test-probe, tv.tv_sec);
sleep(1);

return 6;

11

eBPF

e eBPF also provides a way for userspace to
communicate with a eBPF program.

e BPF_PERF_OUTPUT
o Fast ring buffer

o (Can create multiple ring buffers per eBPF program

12

eBPF

e Don't write eBPF bytecode by hand.
e Use the bcc compiler!

o https://github.com/iovisor/bcc

13

https://github.com/iovisor/bcc

eBPF

e Running arbitrary code in the kernel is risky.

e eBPF has a validator that tries to ensure that eBPF
programs are “safe”

o eBPF program must terminate
o Validates stack / register state

o Validates no out-of-bounds reads

14

Current eBPF Usage

e eBPF is mainly used for instrumenting production Linux
systems.

e Especially popular in container / kubernetes
environment.

e Firewalls -
https://cilium.io/blog/2018/11/20/fb-bpf-firewall/

15

https://cilium.io/blog/2018/11/20/fb-bpf-firewall/

Why eBPF?

eBPF - Android Reverse
Engineering Superpowers

Reverse Engineering

e Reverse Engineering is about understanding an
application.

e Three main categories of techniques:
o Static Analysis - IDA Pro / Ghidra
o Debugging - GDB / WIinDBG / Intel PIN / Frida

o Behavioural Analysis - strace / Itrace / Procmon

18

Anti-Reversing

e Anti-Reversing tricks for each technique:
o Static Analysis - Obfuscation

o Debugging - Anti-debugging, Root / Jailbreak
Detection

o Behavioural Analysis - Anti-debugging, Root /
Jailbreak Detection

19

Anti-Reversing

e OWASP MSTG describes some common anti-reversing
techniques:

o https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x
05j-testing-resiliency-against-reverse-engineering

o https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06j-te
sting-resiliency-against-reverse-engineering

20

https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06j-testing-resiliency-against-reverse-engineering

Android Anti-Reversing

e Android applications commonly utilize a combination
of the following tricks:

o Root Detection
o Anti-Debugging
o Obfuscation

o File Integrity Checks

21

Android Anti-Reversing

e Tricks that prevent ptrace from being used are
particularly annoying.

e Many common tools rely on being able to ptrace the
target process.

o strace
o Gdb

o Frida

22

Anti-ptrace Example

e Only one tracer can be attached to a process.

e ptrace-ing a process that is already being debugged by
another process will fail.

e A common technique is for an application to fork a
child process that attaches to the parent process.

23

Anti-ptrace Example

NOSD SO M At ee e Fork a child process.
int pid = fork
pid =="0
int ppid = getppid
if (ptrace(PTRACE_ATTACH, ppid, NULL, NULL) ==

waitpid(ppid, NULL, ©);

x Continue the parent process %/

ptrace(PTRACE_CONT, NULL, NULL

24

Anti-ptrace Example

e Fork a child process.

e Child process calls
ptrace on the parent

int ppid = getppid proceSS.

if (ptrace(PTRACE_ATTACH, ppid, NULL, NULL) ==

e Aslong as the child
process is alive, no
x Continue the parent process %/ Other prOCESS can
ptrace(PTRACE_CONT, NULL, N
ptrace the parent.

waitpid(ppid, NULL, ©);

25

Anti-ptrace Example

e In the trivial example, killing the child process will allow
the parent process to be debugged.

e In practice, tricks to ensure that the child process
remains alive can be used.

o Forking multiple processes tracing each other

o Monitoring running processes

26

Android Anti-Reversing

e Applications with multiple anti-RE tricks implemented
can be difficult to analyze.

e Low level (kernel!) capabilities are really helpful to
debug such applications.

e You essentially want capabilities at a level of the system
that the application cannot subvert.

27

Android Anti-Reversing

e Previously, this meant writing a kernel module.

o Error-prone: Bad code means crashing your device

o Tedious development process: Write -> Compile -> Transfer to Device
-> Hope it works

e What other options do we have if we want to run
custom code in the kernel? €

28

eBPF on Android

Requirements & Setup

e eBPF works on Android because Android uses a
relatively standard Linux kernel.

e Took me a while to figure out how to get everything
working.

e Most of the documentation for the eBPF toolchain
assumes standard Linux instead of Android.

30

bcc toolchain

e bccis the standard eBPF compiler toolchain.

o https://github.com/iovisor/bcc

e |tisaLLVM-based compiler toolchain that compiles C
code to eBPF bytecode.

e Requires kernel headers to be present.

e Requires Python.

31

https://github.com/iovisor/bcc

adeb

e adeb makes it easy to setup the bcc toolchain.

o https://github.com/joelagnel/adeb

e Essentially a Debian-based environment running on the
Android device via chroot magic.

e Comes with bcc and other useful tools.

Ky

https://github.com/joelagnel/adeb

Building the Android Kernel

e adeb still requires a kernel with the required configs
turned on.

e Kernel version 4.9 and above

o CONFIG_KPROBES=y

o CONFIG_KPROBE_EVENT=y
o CONFIG_BPF_SYSCALL=y

o CONFIG_IKHEADERS=m

o CONFIG_UPROBES=y

o CONFIG_UPROBE_EVENT=y

Building the Android Kernel

e No current Android ships with the necessary configs.

o Have not looked at Android Q yet.

e This means building your own kernel.

e Process differs depending on where you are running
Android (Emulator vs device, etc)

Kz

adeb

e adeb prepare --full --build --kernelsrc path/to/kernel
o --arch <amd64/arme64/etc>

o --buildtar <output dir>

e adeb prepare --archive <output dir>/androdeb-fs.tgz
--kernelsrc path/to/kernel

35

adeb
e adeb shell

e bcc by default comes with some really useful utilities.
o filetop
o opensnoop (and other *snoop commands)

o efc

36

https://docs.google.com/file/d/1H-sZ9lMFWc1FlgiyR3QQVZsbh_yB7F2o/preview

Writing eBPF
programs

bcc toolchain

e With bcc, you write eBPF programs in Python.
o import bcc
o Build a string that contains the eBPF program.

o Pass string to bcc which invokes LLVM behind the
scenes and loads the compiled program into the
kernel.

39

Hello World

e Write an eBPF program that prints out all the files
opened on the system.

o Attach to an appropriate kernel function
o Send the pathname being opened to userspace

o Print the output

40

Hello World

#!/usr/bin/python

e open_data_tis a struct
that stores data we want
to send to userspace.

from bcc import BPF
program = nun
#include <asm/ptrace.h>
#include <uapi/linux/limits.h>

struct open_data_t { e BPF_PERF_OUTPUT opens
char fname[NAME MAX]; R
¥i ’ up a ring buffer called

open_event .

BPF_PERF OUTPUT(open_event);

int kprobe sys openat(struct pt regs *ctx,
int dirfd, char user* pathname, int flags, mode t mode) {

struct open data t data = {{}};
bpf probe read(&data.fname, sizeof(data.fname), (void *)pathname);

open event.perf submit(ctx, &data, sizeof(data));

return 0;

41

Hello World

#!/usr/bin/python
e kprobe _ syntax tells bcc
that the function is a

from bcc import BPF

program = """
#include <asm/ptrace.h> kprobe.
#include <uapi/linux/limits.h>

STtruct open data it - e The function arguments
char fname[NAME MAX];

}; to the syscall can be

omitted if your eBPF

program does not use

them.

BPF_PERF OUTPUT(open_event);

int kprobe sys openat(struct pt regs *ctx,
int dirfd, char user* pathname, int flags, mode t mode) {

struct open data t data = {{}};
bpf probe read(&data.fname, sizeof(data.fname), (void *)pathname);

open event.perf submit(ctx, &data, sizeof(data));

return 0;

42

Hello World

#!/usr/bin/python
e |nitialize an instance of
open_data_t to store the

from bcc import BPF

program = """

#include <asm/ptrace.h> file name.
#include <uapi/linux/limits.h>
struct open data t { P Use the special
char fname[NAME MAX]; .
}; bpf probe_read function

to copy the data into the
fname array.

BPF_PERF OUTPUT(open_event);

int kprobe sys openat(struct pt regs *ctx,
int dirfd, char user* pathname, int flags, mode t mode) {

struct open data t data = {{}}; ¢ Open—event'perf—Smelt

bpf probe read(&data.fname, sizeof(data.fname), (void *)pathname); sends the initialized
open event.perf submit(ctx, &data, sizeof(data)); .
open_daalflnstanceto

return 0; userspace.

43

Hello World

: : e print_ open_eventis a
def print open event(cpu, data, size): Iback f . h
event = b["open event"].event(data) callback tunction that can

print event.fname be made to trigger when
a perf event is received.

NN
0~ O W,

W NN NN
(Vo)

b = BPF(text=program)
b["open event"].open perf buffer(print open event)

w N = O

while True:
try:
b.perf buffer poll()
except KeyboardInterrupt:
exit()

3
%
3
¥
3
e
3

w w w w
N OO

(0]

44

Hello World

N

: : e print_ open_eventis a
def print open event(cpu, data, size): Iback f . h
event = b["open event"].event(data) callback tunction that can

print event.fname be made to trigger when
a perf event is received.

N NN
O ~NO WD

O

b = BPF(text=program)
b["open event"].open perf buffer(print open event) T
["open_ J.open_pert_ prent_open_ e |Initialize an eBPF program
while True: and opens up the perf
try: buffer called open_event.
b.perf buffer poll()
except KeyboardInterrupt:
exit()

2
-
3
3
-
3
-
3
2
-7

D s WN =

w Ww w w
(o))

0

45

Hello World

N

: : e print_ open_eventis a
def print open event(cpu, data, size): Iback f . h
event = b["open event"].event(data) callback tunction that can

print event.fname be made to trigger when
a perf event is received.

N NN
O ~NO WD

[Te)

b = BPF(text=program)

b["open event"].open perf buffer(print open event) e
pen_ Pen_pert_ prent_open._ e |Initialize an eBPF program

while True: and opens up the perf

try: buffer called open_event.
b.perf buffer poll()

except KeyboardInterrupt: .
SxhEL) e Polls all opened buffers in

an infinite loop.

7,
-
3
3
%
3
)
3
2
-7

D s WN =

w Ww w w
(o))

0

46

https://docs.google.com/file/d/1Dz-_52iqhZI0EBs3kw80J1xx1c2dDbvr/preview

Code Generation

e (Codegen is a common pattern that you will see in eBPF
programs.

e Useful if there is a part of the code you want to change
every time you run the program.

o PID filtering is one example.

e (Codegen is also useful to get around eBPF limitations.

48

Code Generation

#!/usr/bin/python

[

N

from bcc import BPF

n U bW

program = """
#include <asm/ptrace.h>
#include <uapi/linux/limits.h>

struct open data t {
char fname[NAME MAX];
¥
BPF PERF OUTPUT(open event);

int kprobe sys openat(struct pt regs *ctx,
int dirfd, char user* pathname, int flags, mode t mode) {

PID FILTER

N

struct open data t data = {{}};
bpf probe read(&data.fname, sizeof(data.fname), (void *)pathname);
open event.perf submit(ctx, &data, sizeof(data));

N
ot

W N

return 0;

}

w

N NN N NN
o

()]

Code Generation

e |nsert_pid._filter replaces

. S— : the PID_FILTER
def insert pid filter(bpf text, pid):

bpf text = "#define FILTER PID {}\n".format(pid) + bpf text placeholder in the eBPF
S e program string with C
u64 pid tgid = bpf get current pid tgid();
if (pid tgid >> 32 != FILTER PID) { code.

return 0;

w

w W

0~ O

O

}

nun

e
-
-
2

bpf text = bpf text.replace("PID FILTER", pid filter)

return bpf text

program = insert pid filter(program, sys.argv[1])

50

Code Generation

e |nsert_pid._filter replaces
the PID_FILTER

33 def insert pid filter(bpf text, pid): }
34 bpf_text = "#define FILTER PID {}\n".format(pid) + bpf_ text placeholder in the eBPF
35 pid filter = """ e s program string with C
36 u64 pid tgid = bpf get current pid tgid();
37 if (pid tgid >> 32 !'= FILTER PID) { code.
38 return 0;
2 k. e The value of the
bpf text = bpf text.replace("PID FILTER", pid filter) F|LTER_P|D macro
depends on the value of
return bpf text
sys.argv(1].

program = insert pid filter(program, sys.argv[1])

51

https://docs.google.com/file/d/1UOozfXSlTvBR_OCMCyZKrlYIUQ6bQTny/preview

strace.py

e Syscall tracing utility implemented with eBPF
e Trace mode vs Aggregate mode

e Filter by PID / Process Name

e Filter only syscalls you are interested in

e Disclaimer: Pretty ugly code

https://docs.google.com/file/d/1r_GBro9D3Tm7LiBFvwLqdKeICFw-_-Ya/preview

Modifying the system with eBPF
e eBPF can write to userspace memory with the
bpf_probe_write_user function.

o int bpf_probe_write_user(void *dst, const void *src, u32 len)

e This only works for userspace memory that already has
write permissions in place.

o S0 no writing to the .text segment with eBPF

o You can however write to the stack, heap, etc

55

Modifying the system with eBPF

e As an example, we can use this capability to bypass
simple root detection techniques.

e OWASP MSTG - UnCrackable-Level3.apk

e Looks for the presence of certain files on the system.

56

Modifying the system with eBPF

/sbin/su

/system/app/Superuser.apk

/system/sbin/su

/system/xbin/daemonsu

/apex/com.android.runtime/bin/su

/system/etc/init.d/99SuperSUDaemon

/system/bin/su

/system/bin/.ext/.su

/system/xbin/su

/system/etc/.has_su_daemon

/odm/bin/su

/system/etc/.installed_su_daemon

/vendor/bin/su

/dev/com.koushikdutta.superuser.daemon

/vendor/xbin/su

57

Modifying the system with eBPF

e faccessat syscall is used to test for the presence of the
files.

o intfaccessat(int dirfd, const char *pathname, int mode, int flags);

e We can use bpf probe_write_user to modify the value of
the pathname parameter.

e Redirect all faccessat calls on those files to a
non-existent file.

58

https://docs.google.com/file/d/1hd2YATQ1kYPEpLRpiXHJyFWUGNm5Wq97/preview

Closing Notes

Limitations

e The verifier can get in the way of writing complex or
substantial programs.

e Requires familiarity with Linux Kernel APIs.

e No stable kernel APIl. An eBPF program working on one
version might break after an upgrade.

o https://github.com/torvalds/linux/blob/master/Documentation/process/stable-api-nonse
nse.rst

61

https://github.com/torvalds/linux/blob/master/Documentation/process/stable-api-nonsense.rst
https://github.com/torvalds/linux/blob/master/Documentation/process/stable-api-nonsense.rst

Limitations

e An eBPF program cannot write to kernel memory.

e TOCTOU issues are a huge problem when hooking
syscalls.

o Exploiting races in system call wrappers -
https://lwn.net/Articles/245630/

62

https://lwn.net/Articles/245630/

Awesome-ness

e eBPF offers a lot of power while being relatively simple
to write.

o Good for ad-hoc tracing or scripting

e Want to see: a set of eBPF programs like the ones in bcc
but focused on security / RE.

63

Useful Resources

e bcc Reference Guide -

https://github.com/iovisor/bcc/blob/master/docs/refer
ence guide.md

e man and other Linux kernel programming references

e BPF Performance Tools

o http://www.brendangregg.com/bpf-performance-tools-book.html

64

https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
http://www.brendangregg.com/bpf-performance-tools-book.html

Code:

https://github.com/CenturioninfoSec/ebpf-
examples

Slides:
https://bit.ly/2kUnlrg

65

https://github.com/CenturionInfoSec/ebpf-examples
https://github.com/CenturionInfoSec/ebpf-examples

66

67

68

69

