
eBPF - Android Reverse
Engineering Superpowers

Terry Chia

$ whoami

● Security Consultant @ Centurion Information Security

● Blog: https://www.ayrx.me

● Github: https://github.com/Ayrx

2

https://www.ayrx.me
https://github.com/Ayrx

Agenda

● What is eBPF?

● Why eBPF?

● eBPF on Android

● Writing eBPF programs

3

What is eBPF?

4

eBPF

● extended Berkeley Packet Filter

● Framework for tracing a Linux system

● Linux version of Solaris’ DTrace

● Requires a relatively new Linux kernel (> 4.1). Newer
kernels might have more features.

5

eBPF

● Write custom code that triggers whenever something
happens in the system.

● Write eBPF program & compile to bytecode.

● eBPF bytecode is loaded through the bpf(2) syscall.

● eBPF code is executed with an in-kernel virtual
machine.

6

eBPF

● Event Sources:

○ kprobes / kretprobes

○ uprobes / uretprobes

○ Tracepoints

○ User Statically-Defined Tracing Probes (USDT)

7

k(ret)probes, u(ret)probes

● kprobes / kretprobes are used to attach to kernel
functions.

● uprobes / uretprobes are used to attach to userspace
functions.

8

Tracepoints

● Tracepoints are used to attach to events within the
kernel.

● A large number of events are exposed by the kernel.
See /sys/kernel/debug/tracing/events/ for a full list.

9

Tracepoints

10

User Statically-Defined Tracing Probes (USDT)

● USDTs are Tracepoints for userspace.

11

eBPF

● eBPF also provides a way for userspace to
communicate with a eBPF program.

● BPF_PERF_OUTPUT

○ Fast ring buffer

○ Can create multiple ring buffers per eBPF program

12

eBPF

● Don’t write eBPF bytecode by hand.

● Use the bcc compiler!

○ https://github.com/iovisor/bcc

13

https://github.com/iovisor/bcc

eBPF

● Running arbitrary code in the kernel is risky.

● eBPF has a validator that tries to ensure that eBPF
programs are “safe”

○ eBPF program must terminate

○ Validates stack / register state

○ Validates no out-of-bounds reads
14

Current eBPF Usage

● eBPF is mainly used for instrumenting production Linux
systems.

● Especially popular in container / kubernetes
environment.

● Firewalls -
https://cilium.io/blog/2018/11/20/fb-bpf-firewall/

15

https://cilium.io/blog/2018/11/20/fb-bpf-firewall/

Why eBPF?

16

eBPF - Android Reverse
Engineering Superpowers

Reverse Engineering

● Reverse Engineering is about understanding an
application.

● Three main categories of techniques:

○ Static Analysis - IDA Pro / Ghidra

○ Debugging - GDB / WinDBG / Intel PIN / Frida

○ Behavioural Analysis - strace / ltrace / Procmon

18

Anti-Reversing

● Anti-Reversing tricks for each technique:

○ Static Analysis - Obfuscation

○ Debugging - Anti-debugging, Root / Jailbreak
Detection

○ Behavioural Analysis - Anti-debugging, Root /
Jailbreak Detection

19

Anti-Reversing

● OWASP MSTG describes some common anti-reversing
techniques:
○ https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x

05j-testing-resiliency-against-reverse-engineering

○ https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06j-te
sting-resiliency-against-reverse-engineering

20

https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06j-testing-resiliency-against-reverse-engineering

Android Anti-Reversing

● Android applications commonly utilize a combination
of the following tricks:

○ Root Detection

○ Anti-Debugging

○ Obfuscation

○ File Integrity Checks

21

Android Anti-Reversing

● Tricks that prevent ptrace from being used are
particularly annoying.

● Many common tools rely on being able to ptrace the
target process.

○ strace

○ Gdb

○ Frida
22

Anti-ptrace Example

● Only one tracer can be attached to a process.

● ptrace-ing a process that is already being debugged by
another process will fail.

● A common technique is for an application to fork a
child process that attaches to the parent process.

23

Anti-ptrace Example

24

● Fork a child process.

Anti-ptrace Example

25

● Fork a child process.

● Child process calls
ptrace on the parent
process.

● As long as the child
process is alive, no
other process can
ptrace the parent.

Anti-ptrace Example

● In the trivial example, killing the child process will allow
the parent process to be debugged.

● In practice, tricks to ensure that the child process
remains alive can be used.

○ Forking multiple processes tracing each other

○ Monitoring running processes

26

Android Anti-Reversing

● Applications with multiple anti-RE tricks implemented
can be difficult to analyze.

● Low level (kernel!) capabilities are really helpful to
debug such applications.

● You essentially want capabilities at a level of the system
that the application cannot subvert.

27

Android Anti-Reversing

● Previously, this meant writing a kernel module.

○ Error-prone: Bad code means crashing your device

○ Tedious development process: Write -> Compile -> Transfer to Device
-> Hope it works

● What other options do we have if we want to run
custom code in the kernel? 🤔

28

eBPF on Android

29

Requirements & Setup

● eBPF works on Android because Android uses a
relatively standard Linux kernel.

● Took me a while to figure out how to get everything
working.

● Most of the documentation for the eBPF toolchain
assumes standard Linux instead of Android.

30

bcc toolchain

● bcc is the standard eBPF compiler toolchain.

○ https://github.com/iovisor/bcc

● It is a LLVM-based compiler toolchain that compiles C
code to eBPF bytecode.

● Requires kernel headers to be present.

● Requires Python.
31

https://github.com/iovisor/bcc

adeb

● adeb makes it easy to setup the bcc toolchain.

○ https://github.com/joelagnel/adeb

● Essentially a Debian-based environment running on the
Android device via chroot magic.

● Comes with bcc and other useful tools.

32

https://github.com/joelagnel/adeb

Building the Android Kernel

● adeb still requires a kernel with the required configs
turned on.

● Kernel version 4.9 and above
○ CONFIG_KPROBES=y

○ CONFIG_KPROBE_EVENT=y

○ CONFIG_BPF_SYSCALL=y

○ CONFIG_IKHEADERS=m

○ CONFIG_UPROBES=y

○ CONFIG_UPROBE_EVENT=y
33

Building the Android Kernel

● No current Android ships with the necessary configs.

○ Have not looked at Android Q yet.

● This means building your own kernel.

● Process differs depending on where you are running
Android (Emulator vs device, etc)

34

adeb

● adeb prepare --full --build --kernelsrc path/to/kernel

○ --arch <amd64/arm64/etc>

○ --buildtar <output dir>

● adeb prepare --archive <output dir>/androdeb-fs.tgz
--kernelsrc path/to/kernel

35

adeb

● adeb shell

● bcc by default comes with some really useful utilities.

○ filetop

○ opensnoop (and other *snoop commands)

○ etc
36

37

https://docs.google.com/file/d/1H-sZ9lMFWc1FlgiyR3QQVZsbh_yB7F2o/preview

Writing eBPF
programs

38

bcc toolchain

● With bcc, you write eBPF programs in Python.

○ import bcc

○ Build a string that contains the eBPF program.

○ Pass string to bcc which invokes LLVM behind the
scenes and loads the compiled program into the
kernel.

39

Hello World

● Write an eBPF program that prints out all the files
opened on the system.

○ Attach to an appropriate kernel function

○ Send the pathname being opened to userspace

○ Print the output

40

41

Hello World
● open_data_t is a struct

that stores data we want
to send to userspace.

● BPF_PERF_OUTPUT opens
up a ring buffer called
open_event .

42

Hello World
● kprobe__ syntax tells bcc

that the function is a
kprobe.

● The function arguments
to the syscall can be
omitted if your eBPF
program does not use
them.

43

Hello World
● Initialize an instance of

open_data_t to store the
file name.

● Use the special
bpf_probe_read function
to copy the data into the
fname array.

● open_event.perf_submit
sends the initialized
open_data_t instance to
userspace.

44

Hello World
● print_open_event is a

callback function that can
be made to trigger when
a perf event is received.

45

Hello World
● print_open_event is a

callback function that can
be made to trigger when
a perf event is received.

● Initialize an eBPF program
and opens up the perf
buffer called open_event.

46

Hello World
● print_open_event is a

callback function that can
be made to trigger when
a perf event is received.

● Initialize an eBPF program
and opens up the perf
buffer called open_event.

● Polls all opened buffers in
an infinite loop.

47

https://docs.google.com/file/d/1Dz-_52iqhZI0EBs3kw80J1xx1c2dDbvr/preview

Code Generation

● Codegen is a common pattern that you will see in eBPF
programs.

● Useful if there is a part of the code you want to change
every time you run the program.

○ PID filtering is one example.

● Codegen is also useful to get around eBPF limitations.
48

Code Generation

49

Code Generation

50

● insert_pid_filter replaces
the PID_FILTER
placeholder in the eBPF
program string with C
code.

Code Generation

51

● insert_pid_filter replaces
the PID_FILTER
placeholder in the eBPF
program string with C
code.

● The value of the
FILTER_PID macro
depends on the value of
sys.argv[1].

52

https://docs.google.com/file/d/1UOozfXSlTvBR_OCMCyZKrlYIUQ6bQTny/preview

strace.py

● Syscall tracing utility implemented with eBPF

● Trace mode vs Aggregate mode

● Filter by PID / Process Name

● Filter only syscalls you are interested in

● Disclaimer: Pretty ugly code
53

54

https://docs.google.com/file/d/1r_GBro9D3Tm7LiBFvwLqdKeICFw-_-Ya/preview

Modifying the system with eBPF

● eBPF can write to userspace memory with the
bpf_probe_write_user function.

○ int bpf_probe_write_user(void *dst, const void *src, u32 len)

● This only works for userspace memory that already has
write permissions in place.

○ So no writing to the .text segment with eBPF

○ You can however write to the stack, heap, etc
55

Modifying the system with eBPF

● As an example, we can use this capability to bypass
simple root detection techniques.

● OWASP MSTG - UnCrackable-Level3.apk

● Looks for the presence of certain files on the system.

56

Modifying the system with eBPF

57

/sbin/su /system/app/Superuser.apk

/system/sbin/su /system/xbin/daemonsu

/apex/com.android.runtime/bin/su /system/etc/init.d/99SuperSUDaemon

/system/bin/su /system/bin/.ext/.su

/system/xbin/su /system/etc/.has_su_daemon

/odm/bin/su /system/etc/.installed_su_daemon

/vendor/bin/su /dev/com.koushikdutta.superuser.daemon

/vendor/xbin/su

Modifying the system with eBPF

● faccessat syscall is used to test for the presence of the
files.
○ int faccessat(int dirfd, const char *pathname, int mode, int flags);

● We can use bpf_probe_write_user to modify the value of
the pathname parameter.

● Redirect all faccessat calls on those files to a
non-existent file.

58

59

https://docs.google.com/file/d/1hd2YATQ1kYPEpLRpiXHJyFWUGNm5Wq97/preview

Closing Notes

60

Limitations

● The verifier can get in the way of writing complex or
substantial programs.

● Requires familiarity with Linux Kernel APIs.

● No stable kernel API. An eBPF program working on one
version might break after an upgrade.
○ https://github.com/torvalds/linux/blob/master/Documentation/process/stable-api-nonse

nse.rst

61

https://github.com/torvalds/linux/blob/master/Documentation/process/stable-api-nonsense.rst
https://github.com/torvalds/linux/blob/master/Documentation/process/stable-api-nonsense.rst

Limitations

● An eBPF program cannot write to kernel memory.

● TOCTOU issues are a huge problem when hooking
syscalls.

○ Exploiting races in system call wrappers -
https://lwn.net/Articles/245630/

62

https://lwn.net/Articles/245630/

Awesome-ness

● eBPF offers a lot of power while being relatively simple
to write.

○ Good for ad-hoc tracing or scripting

● Want to see: a set of eBPF programs like the ones in bcc
but focused on security / RE.

63

Useful Resources

● bcc Reference Guide -
https://github.com/iovisor/bcc/blob/master/docs/refer
ence_guide.md

● man and other Linux kernel programming references

● BPF Performance Tools

○ http://www.brendangregg.com/bpf-performance-tools-book.html

64

https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
http://www.brendangregg.com/bpf-performance-tools-book.html

Code:
https://github.com/CenturionInfoSec/ebpf-
examples

Slides:
https://bit.ly/2kUnlrg

65

https://github.com/CenturionInfoSec/ebpf-examples
https://github.com/CenturionInfoSec/ebpf-examples

66

67

68

69

