
WHITE PAPER

Industroyer vs.
Industroyer2:
Evolution of the
IEC 104 Component
AUTHORS

Giannis Tsaraias

Ivan Speziale

About
Nozomi Networks
Labs

Nozomi Networks Labs is dedicated to reducing cyber risk for

the world’s industrial and critical infrastructure organizations.

Through its cybersecurity research and collaboration with

industry and institutions, it helps defend the operational

systems that support everyday life.

The Labs team conducts investigations into industrial

device vulnerabilities and, through a responsible

disclosure process, contributes to the publication of

advisories by recognized authorities.

To help the security community with current threats, they

publish timely blogs, research papers and free tools.

The Threat Intelligence and Asset Intelligence services

of Nozomi Networks are supplied by ongoing data

generated and curated by the Labs team.

To find out more, and subscribe to updates, visit

nozominetworks/labs

https://www.nozominetworks.com/products/threat-intelligence/
https://www.nozominetworks.com/products/asset-intelligence/
https://www.nozominetworks.com/labs/

Table of Contents

1. Introduction to Industroyer & Industroyer2 4

2. Industroyer & Industroyer2: The Evolving Source Code 5

2.1 Breaking Down the Samples 5

2.2 v2 Station Configuration 6

2.3 v2 IOA Configuration 7

2.4 v2 Command-line Parameters 8

2.5 v2 IEC 104 Interaction 9

2.6 Main Thread Spawning 12

2.7 TESTFR Frame Inserted in v2 13

2.8 Start/Stop Data Transfer Activation 14

2.9 Prepare/Send Station Command 15

2.10 Use of Streaming SIMD Extensions (SSE) Instructions 16

2.11 Parse_packet_and_log Function 16

3. Summary 18

4. Addendum: YARA Rule for Industroyer2 18

6. References and Related Reading 19

4
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

Industroyer2 is the latest evolution of the notorious

malware that was first deployed by threat actor Sandworm

in Ukraine in 2016. As documented by ESET, this new

artifact was used in the context of a broader operation

against Ukrainian organizations in 2022.1

The Industroyer artifacts retrieved in 2016 consisted of

components targeting multiple industrial control system

(ICS) protocols, specifically:

 y IEC 60870-5-101,

 y IEC 60870-5-104,

 y IEC 61850,

 y OPC DA.

Industroyer2, however, focuses only on IEC 60870-5-104 (IEC

104), which is just an update to the Industroyer component

targeting the same protocol. This observation leads us to

believe that, depending on the operational requirements,

the threat actors’ implementation of these ICS protocols

is part of a broader framework of capabilities that is

selectively packaged into a specific deliverable.

In this paper, Nozomi Networks Labs analyzes the Operational

Technology (OT) capabilities of Industroyer2, discusses the

major changes between Industroyer and Industroyer2, and

analyzes how the codebase has evolved over time.

A noteworthy characteristic of Industroyer deployments

is the lack of any stealthy measures in the binaries. One

plausible hypothesis is that the threat actor, having already

compromised the target environment and performed

advanced reconnaissance, is not concerned about potential

security controls.

A second hypothesis is that due to time constraints, the

operators would not have time to simultaneously obfuscate

their activity and improve their posture in the environment

by the time of malware delivery. Given the resources and

expertise of the threat actor, we believe this scenario to

be less likely. Nevertheless, it is clear that Sandworm is

not concerned about different Industroyer versions being

attributed to the same actor through comparison of the

target artifacts.

The takeaway for security teams is that advanced threat

actors are continuously refining their OT capabilities to

adapt to different operational scenarios. In the current

threat landscape it’s paramount to detect and respond to

sophisticated attackers before they reach OT system—their

ability to analyze the targeted environment and modify its

status was demonstrated once more with Industroyer2.

1. Introduction to
Industroyer & Industroyer2

5
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The
Evolving Source Code

2.1 Breaking Down the Samples

In this section, we present a series of evidence that

collectively and strongly supports the thesis that the two

binaries, Industroyer and Industroyer2, were compiled from

the same evolving source code.

Throughout our analysis, we will refer to the first version

of Industroyer as “v1”, which corresponds to sample

7907dd95c1d36cf3dc842a1bd804f0db511a0f68f4b3

d382c23a3c974a383cad (104.dll). We will refer to

Industroyer2 as “v2”, which corresponds to sample

d69665f56ddef7ad4e71971f06432e59f1510a7194386

e5f0e8926aea7b88e00.

The screenshot below (Figure 1) compares similar

functionalities in the binaries. The decompiled code of v1

is presented on the left while the matching part of v2 is

shown on the right.

Figure 1 - Example comparison between Industroyer v1 (left) and v2 (right).

The syntax of the configuration is the most obvious visual

difference between the two versions of the malware. However,

this refactor is largely irrelevant for the internal structure of

the executables. In both cases the configuration is normalized

into a matching data structure, called main_config in our

analysis, that is then used throughout the code.

As described by ESET, Industroyer v1 uses a classic INI

configuration file that is passed as an argument to the

Crash export of 104.dll.2 Meanwhile, the Industroyer v2

sample that we analyzed hardcodes its configuration inside

the binary in the form of a string.

Below, we present the possible properties for the

hardcoded station and Information Object Address (IOA)

configurations embedded in the analyzed binary.

6
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

The following screenshot (Figure 2) shows the first

hardcoded station configuration embedded in the analyzed

binary of v2. The sample embeds configurations for three

different IP addresses in total.

Below (Figure 3), we present the possible properties for

the hardcoded station and IOA configurations embedded

in the analyzed binary of v2.

Figure 3 - Target Configuration.

Figure 2 - Station Configuration.

2.2 v2 Station Configuration

Property Acceptable Values Purpose

Target IP IP address IP of the station to connect to

Target port Port number Port of the station to connect to

ASDU Integer Application Service Data Unit address

Operation mode Boolean 0 (Interaction with hardcoded IOA), 1 (Range mode)

Switch for process manipulation Boolean 0 (Disable), 1 (Enable)

Reserved parameter Boolean -

Process name String Name of the process to be killed

Rename Boolean 0 (Don't rename), 1 (Rename)

Folder name String Folder name where the process targeted for killing and renaming is stored

Sleep time in minutes Integer Initial sleep time, used to add a delay before interacting with a station

Sleep time in seconds #1 Integer Sleep time to use when Invert SCO/DCO On/Off is set

Station index Integer Configuration station index to delay

Sleep time in seconds #2 Integer Sleep time before STOPDT for the previously used station index

Initial SCO/DCO On/Off State Boolean 0 (Initial state On), 1 (Initial state Off)

Invert SCO/DCO On/Off Boolean If set, it will interact with each IOA again, with SCO/DCO On/Off inverted

IOA count Integer Number of IOA following header

7
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

An IOA is used to address one specific piece of data within a

station. IOA configurations typically differ from station to station.

In the screenshot below (Figure 4) you can see the IEC-104

testbed traffic using the first station configuration.

The table below (Figure 5) shows the configurable IOA properties.

Figure 4 - IEC 104 testbed traffic using first station configuration.

2.3 v2 IOA Configuration

Property Acceptable Values Purpose

IOA Integer Information Object Address

Single/Double command Boolean 0 (Double command), 1 (Single command)

SCO/DCO Select/Execute Boolean 0 (Execute), 1 (Select)

SCO/DCO On/Off Boolean 0 (Off), 1 (On)

Priority Integer -

Index Integer IOA entry index in the configuration list

Figure 5 - IOA Configuration.

8
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

While v1 included a separate component to load and launch

payloads contained in different Dynamic-link Libraries (DLLs),

the v2 sample provides the user with the ability to set certain

command-line options.

As shown in Figure 6, two command-line flags are supported

by the v2 executable; namely, -o and -t. The -o flag can be

used to store the execution output log into a file instead

of printing it to standard output. The -t flag can be used

to perform a delayed execution. For example, running the

program with -t 10 as an argument at 1:08 PM will cause

a time delay of approximately two minutes before the

executable spawns its main thread at 1:10 PM.

2.4 v2 Command-line Parameters

Figure 6 - Command-line argument handling.

9
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

2.5 v2 IEC 104 Interaction

After terminating PServiceControl.exe, and

PService_PPD.exe (based on the configuration) being

renamed with .MZ appended to its name, the v2 sample

begins IEC 104 interaction.

Figure 7 - Process termination and file renaming.

10
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

The default operation mode (0) set in the station

configurations present in our sample produces the

following series of commands:

 y TESTFR

 y STARTDT

 y C_IC_NA_1 (100)

 y For each IOA configuration:

 ‐ C_SC_NA_1 (45) or C_DC_NA_1 (46) command,
depending on the Single/Double command field in
the configuration

 y STOPDT

If the operation mode is set to 1 instead, the sample expects

to find a starting index and an ending index following the

station configuration, which is then used as a range of

IOAs to iterate through. In this case, the following series of

commands are generated in our testbed:

 y TESTFR

 y STARTDT

 y C_IC_NA_1 (100)

 y For each IOA in the range start_index → end_index:

 ‐ C_SC_NA_1 (45) with SCO Off and Execute

 y STOPDT

 y TESTFR

 y STARTDT

 y C_IC_NA_1 (100)

 y For each IOA in the range start_index → end_index:

 ‐ C_DC_NA_1 (46) with DCO Off and Select

 ‐ C_DC_NA_1 (46) with DCO Off and Execute

 y STOPDT

In Figures 8a and 8b, we show both Single and Double

commands for range modes starting with 2 and ending with 9:

Figure 8a - Range mode with start index 2 and end index 9, Single commands.

11
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

Figure 8b - Range mode with start index 2 and end index 9, Single commands.

12
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

2.6 Main Thread Spawning

The main thread of both samples contains the code

responsible for issuing the malicious IEC 104 packets. In v1,

the main thread is spawned from the Crash export, while in

v2 the execution starts from the regular PE entry point. In

both cases the configuration is parsed before reaching this

stage (Figure 9).

Beginning with this function, the usage of a structure

dubbed main_config in our decompilation (Figure 10),

becomes pervasive throughout the codebase. In both the

samples this structure operates as the main glue between

the configuration and the rest of the code, independently

from the configuration format used.

The way in which main_config is used is a strong indicator

of how the two executables were compiled from the same

source code and updated over time.

Figure 9 - Main thread spawning.

Figure 9 - main_config structure definition.

13
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

2.7 TESTFR Frame Inserted in v2

TESTFR frames in IEC 104 are used between the controlling

station and the controlled station to periodically check

the status of a connection and eventually detect

communication problems. After having established a TCP

connection, Industroyer v1 begins emitting STARTDT frames.

This marks the beginning of a data transfer from the

controlling station to the controlled station.

Industroyer v2, instead, takes the extra step of sending a TESTFR

frame as we can also observe in the traffic dump (Figure 12).

Figure 11 - Main thread comparison.

Figure 12 - TESTFR frame in Industroyer v2

14
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

2.8 Start/Stop Data Transfer Activation

The functions responsible for creating and sending STARTDT

and STOPDT frames are essentially the same across the

two executables. We can spot minor differences in the

way dynamic memory is allocated, but the only functional

difference is a sleep timeout. In v1, it is customizable

through the configuration, and in v2 is hardcoded to one

second for both the functions.

We can also observe how the invocation of function

 parse_received_packet varies slightly between v1 and v2

of the malware. From a functional perspective, the most

important update is the ability to reply to TESTFR activation

commands with TESTFR confirmation frames.

Figure 13 - STARTDT frame creation.

Figure 14 - STOPDT frame creation.

15
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

2.9 Prepare/Send Station Command

The function named in our decompilation as

iec104_prepare_and_send_station_command (Figure 15)

is found in both versions of the malware with similar

semantics. Nevertheless, we can appreciate how in v2 the

function can receive more IEC 104 parameters to properly

customize the packet payload.

A plausible reason for this v2 function is that at first the

developers designed an abstraction that satisfied the initial

requirements, which over time changed to incorporate

more flexibility. This is also the general feeling that an

analyst gets when assessing the evolution of this codebase.

A first rough version is developed to achieve a specific goal

and it eventually morphed into a full-fledged framework to

surgically manipulate IEC 104 payloads.

Figure 15 - Function iec104_prepare_and_send_station_command invocation.

16
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

2.10 Use of Streaming SIMD Extensions (SSE) Instructions

2.11 Parse_packet_and_log Function

Some of the IEC 104 commands are assembled from a bytes

template that is hardcoded in the binaries. The curiosity is

that in v1 these bytes are handled with x86 SSE instructions,

while in v2 regular non-SSE instructions are used instead.

This is typically due to the threat actor choosing different

optimization settings upon compilation (Figure 16).

The function dubbed Parse_packet_and_log used in the

malware provides some basic dissection of the packets

received from the controlled station in response to the

issued IEC 104 commands. We discovered an interesting

typo introduced in Industroyer v2 (line 164) where the

STOPDT con string is logged rather than the correct

STOPDT act, as found in Industroyer v1 (Figure 17).

Although this typo does not have functional consequences,

it is an interesting artifact that can seldom be found in a

refactored codebase.

Figure 16 - Different compiler optimizations between the v1 and v2.

Figure 17 - Function Parse_packet_and_log.

17
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

2. Industroyer & Industroyer2: The Evolving Source Code

Figure 18 - Function Parse_packet_and_log.

There are a couple of functions used in Parse_packet_and_log

which map a code (cause and typeid) to a verbose string

description. For unknown reasons, the body of these

functions has been removed from the v2 executable. It is

extremely unlikely that this is due to the fear of being

detected, as there are no such precautions throughout the

malware. We speculate that this might be due to some pre-

processor directives.

18
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

3. Summary
We conducted a comparative analysis of the artifact

known as Industroyer2 against the first deployment

of the same toolkit. The evidence presented strongly

suggests that the threat group is updating the

codebase over time to meet operational requirements

as they evolve.

Additionally, we provided a thorough breakdown of the

configuration format used by Industroyer2, illustrating

the different options available to customize the behavior

of the IEC 104 payload.

Finally, we want to highlight a major difference between

advanced threat actors and more ordinary adversaries.

Sophisticated operators can not only compromise targets

in-depth to reach the OT network, but they also have the

technical capabilities to analyze the targeted environment

and craft custom tools to manipulate OT systems.

4. Addendum: YARA Rule
for Industroyer2
Below is a YARA rule for Industroyer2:

// Created by Nozomi Networks Labs

rule industroyer2_nn {

 meta:
 author = "Nozomi Networks Labs"
 name = "Industroyer2"
 description = "Industroyer2 malware targeting power grid components."
 actor = "Sandworm"
 hash = "D69665F56DDEF7AD4E71971F06432E59F1510A7194386E5F0E8926AEA7B88E00"

 strings:
 $s1 = "%02d:%lS" wide ascii
 $s2 = "PService_PPD.exe" wide ascii
 $s3 = "D:\\OIK\\DevCounter" wide ascii
 $s4 = "MSTR ->> SLV" fullword wide ascii
 $s5 = "MSTR <<- SLV" fullword wide ascii
 $s6 = "Current operation : %s"
 $s7 = "Switch value: %s"
 $s8 = "Unknown APDU format !!!"
 $s9 = "Length:%u bytes |"
 $s10 = "Sent=x%X | Received=x%X"
 $s11 = "ASDU:%u | OA:%u | IOA:%u |"
 $s12 = "Cause: %s (x%X) | Telegram type: %s (x%X)"

 condition:
 5 of them
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
23
25
26
27
28

19
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

6. References and Related Reading

1. “Industroyer2: Industroyer reloaded," ESET Research, April 12, 2022.

2. "WIN32/INDUSTROYER: A new threat for industrial control systems," Cherepanov, A., ESET Research, June 12, 2017.

Related Reading

 y "Industroyer2: Nozomi Networks Labs Analyzes the IEC 104 Payload," Nozomi Networks Labs, April 27, 2022.

 y "Cyberattack by Sandworm Group (UAC-0082) on Ukrainian energy facilities using malicious programs INDUSTROYER2 and

CADDYWIPER (CERT-UA # 4435)," CERT-UA, April 12, 2022.

https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_Industroyer.pdf
https://www.nozominetworks.com/blog/industroyer2-nozomi-networks-labs-analyzes-the-iec-104-payload/
https://cert.gov.ua/article/39518
https://cert.gov.ua/article/39518

20
WHITE PAPER

Industroyer vs Industroyer2: Evolution of the IEC 104 Component

v

nozominetworks.com

© 2022 Nozomi Networks, Inc.

All Rights Reserved.

NN-WP-IND-VS-IND2-A4-001

v

Nozomi
Networks
The Leading Solution for
OT and IoT Security and Visibility
Nozomi Networks accelerates digital transformation by protecting the world’s

critical infrastructure, industrial and government organizations from cyber

threats. Our solution delivers exceptional network and asset visibility, threat

detection, and insights for OT and IoT environments. Customers rely on us to

minimize risk and complexity while maximizing operational resilience.

	1. Introduction to
Industroyer & Industroyer2
	2. Industroyer & Industroyer2: The Evolving Source Code
	2.1 Breaking Down the Samples
	2.2 v2 Target Configuration
	2.3 v2 IOA Configuration
	2.4 v2 Command-line Parameters
	2.5 v2 IEC 104 Interaction
	2.6 Main Thread Spawning (Comparison)
	2.7 TESTFR Frame Inserted in v2
	2.8 Start/Stop Data Transfer Activation
	2.9 Prepare/Send Station Command
	2.10 Use of Streaming SIMD Extensions (SSE) Instructions
	2.11 Parse_packet_and_log Function

	3. Summary
	4.	Addendum: YARA Rule
for Industroyer2
	6. References and Related Reading

