
elastic.co

Data building blocks for
an observability solution
What is telemetry?

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 2

Introduction..3
Types of telemetry data..5
Logs..5
Unstructured and semi-structured logs.. 6

Structured logs... 9

Log volumes and "signal to noise"...10

Metrics.. 11
Counters...14

Accumulators...14

Usage metrics..14

Utilization or ratio metrics..15

Aggregation metrics..15

Traces...17
Proactive availability testing...21
Putting all your metrics, logs, and traces to use in an observability platform ...22

Table of contents

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 3

Introduction
According to the Cambridge dictionary, telemetry is "the science or process .
of collecting information about objects that are far away and sending the
information somewhere electronically." But the usage of the term telemetry
in software systems generally refers to the collection of data relevant to the
performance of applications, services, and the infrastructure that they run on.

Modern application architectures are distributed and run hundreds of different
services in a hybrid environment. They're running in multiple locations, on different
cloud providers, even on different continents. In this ebook we'll go over the
basics of telemetry, so you can better understand and identify the different types
of telemetry data and how it can be leveraged for observability initiatives.

As software systems get more complex, it's imperative to collect and observe
telemetry data, enabling us to understand the components in the system, the
interactions between them, and to triage and act upon any problems that may
arise. Collecting and storing as much telemetry data as possible is needed for
an observability solution. And oftentimes, missing data will make it harder to
troubleshoot future application issues.

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 4

Types of telemetry data
When monitoring applications and infrastructure, the types of telemetry data can
be broken down into three main types: logs, metrics, and traces. All three signals
provide valuable insights for developers, architects, DevOps, and site reliability
engineers (SREs). Combined, they provide a holistic view of your deployments and
help you to identify and resolve issues. We'll walk through each of these telemetry
data types and break them down a bit more.

Logs
Log messages, or logs, can come from several layers in your infrastructure or
application stack. They can come from your infrastructure (hosts, servers, routers,
or switches), from services like databases, message stores, or orchestration
platforms, and of course, from any applications that you write. Log entries are
created when something eventful happens in a piece of code. Or more specifically,
that a certain point in the code has been reached — a web page has been hit, an
order has been placed, or a query took too long. The way to create a log message
(let's just call these logs now) varies based on the programming language being
used. But they tend to be calls that look something like printf() or System.
out.println(). If you've ever tried to learn any programming language, you've
probably written a log or seen something like this:

class HelloWorld

{
 public static void main(String args[])

 {

 System.out.println("Hello, World!");
 }
}

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 5

This code snippet would print out the ubiquitous software phrase "Hello, World!"
Actual logs will hopefully contain a bit more information. Logs can be structured,
unstructured, or somewhere in between. They will often have a severity level
associated with them, which gives you a bit of control over how "chatty" they are.

Logs, by their nature, are a "point-in-time" resource. They don't often carry
the context of what happened earlier in a transaction or even all of the data
associated with the request. Logs can also be pretty chatty, especially if you have
the verbosity level turned up. Let's break down logs a bit further and then talk
about other types of telemetry and how they can help you see the bigger picture.

Unstructured and semi-structured logs
Unstructured, basic, or plain text logs are basically free-form sets of characters
gathered together. They'll often be human readable and might even read like
sentences. They can be single-line or multi-line in the same file which can make
parsing tricky. You might even find a mix of semi-structured and plain text in the
same log file. Plain text logs don't have any predefined structure and are just .
free-form with whatever the developer thought was important at the time. .
They might only consist of a payload and, if you're lucky, a timestamp.

2021-04-14T14:05:58.019Z Entered <processCard>

2021-04-14T14:05:59.123Z Calling <cardValidation> with [13] digit card
number

2021-04-14T14:05:59.723Z back from luhn algorithm, passed

2021-04-14T14:06:00.123Z card starts with [37] so it's an american
express

In the example above, the logs are pretty easy to read and while it looks like the
developer was trying to delimit fields, they are all free-form.

Logs

Don't turn on DEBUG level logging unless you really need to!

TIP

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 6

Logs

::1 - - [26/Dec/2020:16:16:29 +0200] "GET /favicon.ico HTTP/1.1" 404 209

192.168.33.1 - - [26/Dec/2016:16:22:13 +0000] "GET /hello HTTP/1.1"
404 499 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:50.0)
Gecko/20100101 Firefox/50.0"

::1 - - [26/Dec/2020:16:16:29 +0200] "GET /favicon.ico HTTP/1.1" 404 209

Time: 2021-08-09T14:01:47.811234Z

User@Host: root[root] @ localhost [] Id: 14

Query_time: 2.475469 Lock_time: 0.000287 Rows_sent: 10 Rows_examined:
3145718

use employees;

SET timestamp=1628540304;

SELECT last_name, MAX(salary) AS salary FROM employees INNER JOIN salaries
ON employees.emp_no = salaries.emp_no GROUP BY last_name ORDER BY salary
DESC LIMIT 10;

Semi-structured logs, on the other hand, have a somewhat predefined format. .
For example, a log from an Apache web server:

At a glance it's not obvious what's what. There's what looks like a date and maybe
a timezone offset, along with a few other fields. The second line has more data
than the first and now it looks like the first entry is an IP address. In reality, each
line is conveying the requesting IP address, a couple fields for identity (which in
this case were blank, hence the -), the timestamp (in the []), the method and
page being requested, along with the version (in quotes), the response code, and
the size of the response in bytes. The second entry has a couple of additional
fields: the referrer (again, blank) and the user agent which describes the browser
that the client used.

A more complex example comes from an entry in the MySQL slow log:

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 7

Rather than the approach taken by the Apache logs, where it relies on .
punctuation and whitespace to delimit fields, this log has more of a two-
dimensional approach. The lines that start with the # provide some context. .
The first # is the timestamp, the second # is identification, and the third # has
some statistics. Note that each of those lines can also be further broken down.
Finally, the remainder of the entry shows the time and the query that was slow.

As you can see, logs can be formatted so they are easy to read, but when each
application and service has a different format, it makes it harder to aggregate .
the logs from your entire application stack.

Log aggregation tools will often parse plain text and semi-structured logs into
individual log entries. Semi-structured logs make it a bit easier to break down log
entries into discrete fields, but there's still some amount of parsing that needs to
be done to accomplish this. For common formats such as the Apache and MySQL
slow logs above, log aggregation tools will parse out the individual fields such as
query_time and user information for the slow log. Or the response_code .
and response_size_in_bytes from the Apache httpd log. In the case of .
free-form or plain text logs, you'll likely just get a timestamp (which, if not .
provided in the log message itself, will be added at the time of import) and the
payload or text itself.

Logs

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry
https://en.wikipedia.org/wiki/Parsing

elastic.co Data building blocks for an observability solution | 8

Another example of semi-structured logs is system logs (/var/log/syslog on
Ubuntu, or /var/log/messages and /var/log/secure on CentOS), which may
have any number of formats within them.

22b056fea322c83c7266352fa0950011037bc1f17a9ec89f432 error: context
deadline exceeded"

Aug 29 04:48:27 build-host-97 auditd[405]: Audit daemon rotating log
files

Aug 29 04:48:31 build-host-97 containerd: time="2021-08-
29T04:48:31.279212236Z" level=info msg="shim disconnected"
id=f1bc5d1169ad440784

9fa0deee83cb4764ff22274867f402e2122c8d1e46210b

Aug 29 04:48:31 build-host-97 containerd: time="2021-08-
29T04:48:31.279329273Z" level=error msg="copy shim log" error="read /
proc/self/fd/100: file already closed"

Aug 29 04:48:31 build-host-97 dockerd: time="2021-08-
29T04:48:31.279261706Z" level=info msg="ignoring event"
container=f1bc5d1169ad44078

49fa0deee83cb4764ff22274867f402e2122c8d1e46210b module=libcontainerd
namespace=moby topic=/tasks/delete type="*events.TaskDelete"

Aug 29 04:48:31 build-host-97 kernel: br-bc0db7c1b74e: port
22(veth4f2bb06) entered disabled state

Aug 29 04:48:31 build-host-97 NetworkManager[523]: <info>
[1630212511.3521] manager: (vethd1243bb): new Veth device (/org/
freedesktop/NetworkManager/Devices/38192)

Aug 29 04:48:31 build-host-97 avahi-daemon[480]: Withdrawing address
record for fe80::d430:2dff:fe92:1516 on veth4f2bb06.

Aug 29 04:48:31 build-host-97 kernel: br-bc0db7c1b74e: port
22(veth4f2bb06) entered disabled state

Aug 29 04:48:31 build-host-97 avahi-daemon[480]: Withdrawing workstation
service for vethd1243bb.

Aug 29 04:48:31 build-host-97 kernel: device veth4f2bb06 left promiscuous
mode

Aug 29 04:48:31 build-host-97 kernel: br-bc0db7c1b74e: port
22(veth4f2bb06) entered disabled state

Logs

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 9

Structured logs

While semi-structured logs make it easier for machines to import or ingest logs,
structured logs take the guesswork out of parsing: they start out parsed. By
leveraging JSON formatting as a logging format, the fields and their values can be
made explicit. For example, if the above slow log entry had been structured at the
beginning, it could look like this:

[
 {
 "current_user": "root",

 "lock_time.sec": 0.000287,

 "query": "SELECT last_name, MAX(salary) AS salary FROM employees INNER
JOIN salaries ON employees.emp_no = salaries.emp_no GROUP BY last_name
ORDER BY salary DESC LIMIT 10;",

 "query_time": 2475469000,

 "rows_examined": 3145718,

 "rows_sent": 10,

 "schema": "employees",

 "thread_id": 14,

 "timestamp": "2021-08-09T14:01:45.000Z",

 "user_domain": "localhost",

 "user_name": "root"
 }
]

This newly formatted record has the same information as the multi-line, .
plain-text entry, but the individual fields have been identified and can be
centrally aggregated, searched, filtered, and examined. There's also a benefit
when exploring via the command line as well. When this information was in an
unstructured, multi-line format, it would have required some pretty complex
command-line skills to find all queries against the employees table that took .
more than 1.5 seconds. Now that it has discrete fields you can leverage .
command line tools that understand JSON, such as jq, to query and filter.

Logs

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry
https://stedolan.github.io/jq/

elastic.co Data building blocks for an observability solution | 10

Log volumes and "signal to noise"

The software and infrastructure for a large application stack can generate a large
volume of data: potentially multiple terabytes per day (or much more if you turned
on that DEBUG level). This stream of telemetry data adds up quickly and can tax
observability systems that don't scale well.

Logs are often a great place to look when you know that something has gone
wrong and have some idea where, but quite often issues and errors get drowned
out by the sheer volume of data. For observability solutions, powerful search .
and filtering capabilities are crucial when sifting through large volumes of log .
data. When you're running multiple hosts, containers, and applications, .
centralizing telemetry data drastically reduces triaging time and minimizes
performance issues.

Logs

It's hard to find the needle in the haystack

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 11

Metrics
We've learned that logs are generated when something happens. Metrics, on .
the other hand, tend to be continually updated and provide a summary of system
behavior, often over a specific time period. As we've seen, logs can have numeric
values embedded in them, like the rows_examined from the MySQL slow log
above. Metrics are time series data and represent resource usage or events.
These metrics could come from the operating system (CPU usage, free memory),
or they might come from applications or services (failed requests, response time).
Metrics are always numeric and can be whole numbers or decimal. Like logs,
metrics only exist if someone had the foresight to provision for them. Metrics .
need to be explicitly gathered, calculated, and made available. And they can .
only provide the details that they are configured to deliver.

Metrics don’t just need to be programmed — an understanding of what they signify
is important, too, because they are usually a "point-in-time" view of the data. For
example, if we track memory usage every minute, everything could look fine, but
under the covers and in between those per-minute samplings, it's possible that
applications are trying to chew up more RAM and experiencing memory allocation
failures. Metrics may inadvertently miss cyclical fluctuations, unfortunately.

Metrics also tend to lose value as they age — it might be important to know .
down-to-the-minute resource consumption for the last few days, but that level .
of granularity is probably not needed for events from six months ago.

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 12

Metrics

There are different families of metrics that you might encounter related to
software and infrastructure monitoring, and you'll likely encounter types of .
metrics that are combinations of the below:

Counters

Accumulators

Utilization or ratios

Aggregation metrics

This list is not exhaustive but should serve as a good starting point. Let's take a
closer look at the different types of metrics and the general use case for each,
along with some examples. There are different ways metrics get "published" —
perhaps via an API or even via standard interfaces and protocols (Micrometer,
Telegraf, and Prometheus are commonly used metric delivery mechanisms). How
metrics are delivered doesn't impact what they mean. However they are published,
it's important to note that there is definitely some "fuzziness" around the different
metric types. Data may be stored in one manner, but accessed in another.

It's probably useful to use a few concrete examples of commonly used metrics
when troubleshooting performance issues on a personal computer. Operating
systems include tools to get a high-level overview of system performance: .
Activity Monitor on MacOS, Task Manager on Windows-based operating systems,
or simply top on *nix-flavored systems or MacOS.

Screenshot of activity monitor on MacOS

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 13

The first few columns of the screenshot above show the following commonly used
performance metrics for any machine:

•	 Percentage of CPU (% CPU)

•	 CPU Time

•	 Memory

•	 Sent Bytes

•	 Received Bytes (Rcvd Bytes)

Metrics

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 14

Counters
In general, counter metrics are counting things, and are incremented by one each
time something happens. Some common examples are things like page_faults,
which essentially tracks how many times an application tries to access virtual
memory that isn't loaded in physical memory. Another good example if you're
familiar with web services is page_views — the number of times a webpage .
has been accessed.

While counters usually increase over time, counters can also be used to keep track
of counts. In this case, they might indicate things like the number of open files,
outstanding requests, or the number of people in line.

Counters can be cumulative in that they keep track of the value since the beginning
of a process — some examples would be when a program starts or when the host
machine was last rebooted — but they can also be based on a set time period.

Accumulators
Accumulators are similar to counters, but rather than incrementing by one, they
get incremented (or decremented) by a value when something happens. They can
also be measured by period, since startup, or since forever. A few accumulators
from the list are sent_bytes, received_bytes, and cpu_time. If you're plotting
out accumulators over time, make sure that you're plotting the deltas, .
and not the cumulative sum (unless that's what you want).

Usage metrics
Usage metrics are generally "point-in-time" metrics that get checked on a periodic
basis: things like CPU or memory usage, which are often shown as a gauge.
Whereas accumulators are keeping track, usage metrics are simply the state of
something at a given point in time. It's important to note that how metrics are
calculated is different from how metrics are accessed. The memory metric might
be implemented by the system keeping track of the actual memory allocations and
releases, in which case it's an accumulator as opposed to an overall lookup.

Metrics

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 15

Utilization or ratio metrics
Utilization metrics, such as the percentage_of_cpu from above, are a
comparison between the amount of a resource that is used versus what is
available. In this case, WindowServer was using 53.7% of the available CPU. .
A quick note, though — metrics can be misleading, and it's important to know
where some of them are coming from. With CPU utilization, you might think that
it's 53.7% out of 100%, but that's not the case; if you add up the percentages on
that CPU percentage column it's already over 160%. In fact, the way it's calculated,
this laptop actually tops out at 1,600% CPU.

Aggregation metrics
We've covered some of the fundamentals around metrics: different classifications,
different ways to use them, and a couple of caveats. We haven't yet talked about
different ways to gather metrics.

Of course, you can open up top and see a snapshot your system, but then .
you'd be back in the same situation of structured vs. unstructured logs, and .
have to parse things:

top running in a terminal

Metrics

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 16

Luckily, many common services provide APIs or other interfaces that allow you to
poll to retrieve metrics; simply check the documentation for the service in question.
In addition to the other types of metrics we discussed earlier, there's also a hybrid
type of metrics: aggregation metrics.

Aggregation metrics are good when you don't want to know the exact metric value
at a single point in time (for example, CPU utilization); that might require you to
grab the value(s) more often than you'd like. Instead, services provide aggregated
metrics. Instead of getting the CPU usage every ten seconds, you'd rather get the
average CPU usage for the last ten minutes. Aggregated metrics have the benefit
of taking up less storage space and overhead than discrete methods. In this case,
rather than one metric every ten seconds, we have one every 600 seconds. The
drawback is, the longer the time is between measurements, the more likely it is .
that you'll miss a significant event. A short CPU spike in a ten-minute window .
might not impact the average a lot. When leveraging aggregated metrics it's
common to also include min() and max() aggregations for the metric, in addition
to the avg().

Like logs, metrics only tell part of the story. They are simply data points without
context. When you start looking at logs and traces together you can start to see a
combined view. And now you’re able to see the bigger picture. For example, what
was actually happening when the CPU was spiking?

Metrics

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 17

Traces
For logs and metrics to get generated by an application, they need to be explicitly
implemented. Logs are emitted when a particular line of code is executed. Metrics
need to be calculated, aggregated or summed up, incremented, and published
based on the retrieval or dissemination mechanism of choice. Of course, many
common services provide logs and metrics out of the box. Things like databases,
message stores, and even operating systems, tend to include robust logs and
relevant metrics. So all your organization will need to do is add logs and metrics
from the applications and services that you write.

Logs and metrics show interesting events that have happened in your systems,
and key performance indicators of resource utilization. However, they don't
show where your applications are spending their time. This is where application
performance monitoring (APM) comes in. APM traces show what your applications
and services are doing. Generally, traces are depicted in what's called a waterfall
view as a distributed trace. A distributed trace shows the path transactions
(or requests) take through your system. These transactions include calls to
microservices and other applications, as well as requests to data stores and other
external services. The waterfall shows nested calls, broken down into spans for
each service. It may also include additional function calls within a service, as
shown below. Additionally, APM often includes information about the instrumented
services such as garbage collection, memory, exceptions, and errors.

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 18

Traces

While logs and metrics need to be explicitly implemented, traces usually require
you to add configuration code to your applications and services to enable them.
This enablement process is called instrumentation. Once your services are
instrumented, you can see where your applications are spending their time. .
The more of your applications and services that you instrument, the more you .
can leverage distributed tracing and follow transactions as they propagate across
your application stack.

Application traces can also detect and visualize the dependencies between
applications and internal or external services, and can be used to gauge the
overall health of your applications.

Distributed trace showing service call interactions

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 19

Application trace data not only captures where your applications are spending
their time and what they're talking to, but it also serves as a mechanism to
centralize errors and exceptions, which lowers mean time to detection (MTTD).
It also allows you to quickly triage and resolve issues, lowering mean time to
resolution (MTTR).

When instrumenting your code for APM, you'll usually have the option to enrich the
instrumentation as little or as much as you'd like. For example, you can add custom
transaction definitions or enrich your traces with custom metadata.

Tracing can also help you gauge the end-user experience holistically. The request
isn't done just because a service sent a response; it still has to be rendered in the
browser. If this final step is done inefficiently, you may end up with unhappy users
(or worse, former users).

Traces

Connections and health indicators

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 20

Earlier we talked about infrastructure metrics: data points that provide information
about how your servers, hosts, virtual machines, or containers are performing.
Application performance metrics show you what is going on with your application
from the inside-out, rather than the outside-in approach of infrastructure metrics.
Infrastructure metrics might show you CPU or memory usage for the pod running
your Java application. They may even include a per-process breakdown, but as
mentioned above, application performance metrics can also include things like
heap usage or garbage collection, both of which are extremely important to know
when things go wrong.

Traces

VM metrics via application performance monitoring

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 21

Proactive availability testing
Logs, metrics, and APM are generally "after-the-fact" tools, which are helpful
when trying to resolve issues, solve problems, or to identify areas that can be
improved in an application ecosystem. The downside is that when you're using
them to investigate something, it usually means that a problem has impacted your
customers. Proactive testing can be as simple as ping or a response test, or it can
be as complex as multi-step transaction checks. It's important to proactively and
continually test key user journeys such as the checkout process, a product search,
or even the action of logging on. Proactively testing these journeys gives you the
chance to uncover issues before they impact your users. You identify problems
before your users ever encounter them.

These proactive tests generate additional latency metrics, response codes, and
success (or failure) metrics, and provide the ability to continually verify behavior
and response. They can be run from multiple geographic locations (for example,
latency as seen from Europe vs. the United States). Also these types of tests can
also be used to validate and verify SLAs for any outside services that you rely on,
allowing you to correlate downstream telemetry with internal data.

Ping test to check for host availability

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 22

Putting all your metrics,
logs, and traces to use in an
observability platform
As seen in the diagram below, there are different types of telemetry to gather
at different layers in your infrastructure and your application stack. At the very
least, capture logs and metrics from everything, including the infrastructure
and orchestration layers. Next, add in traces for any applications and services
possible, and leverage proactive tests for internal and external services that .
you rely on.

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

elastic.co Data building blocks for an observability solution | 23

Elastic Observability is the ideal solution to get started collecting and exploring
the telemetry data from your applications and your entire ecosystem. Multiple
deployment options allow you to begin your journey towards observability quickly
and easily, with full control of your data. You can start out with a free trial of .
Elastic Observability, start gathering and visualizing your telemetry data, and .
begin to improve your users' experience.

Try Elastic Observability

Putting all your metrics, logs, and traces to use in an observability platform

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry
https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry
https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-telemetry

© 2021 Elasticsearch B.V. All rights reserved.

Elastic makes data usable in real time and at scale for enterprise search,
observability, and security. Elastic solutions are built on a single free and open
technology stack that can be deployed anywhere to instantly find actionable
insights from any type of data — from finding documents, to monitoring
infrastructure, to hunting for threats. Thousands of organizations worldwide,
including Cisco, Goldman Sachs, Microsoft, The Mayo Clinic, NASA, The New
York Times, Wikipedia, and Verizon, use Elastic to power mission-critical
systems. Founded in 2012, Elastic is publicly traded on the NYSE under the
symbol ESTC. Learn more at elastic.co.

AMERICAS HQ
800 West El Camino Real, Suite 350, Mountain View, California 94040
General +1 650 458 2620, Sales +1 650 458 2625

info@elastic.co

